
Sensitization Criterion for Threshold Logic Circuits and its

Application

Chen-Kuan Tsai1, Chun-Yao Wang1, Ching-Yi Huang1, Yung-Chih Chen2

1Dept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
2Dept. of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan

Abstract—Threshold logic has been known as an alternative represen-

tation of Boolean logic due to its compactness characteristic. Recently, the

developments in advanced nanotechnologies have also promised efficient

implementations of threshold logic gates. Thus, many synthesis method-

ologies for threshold logic circuits have been proposed. Since threshold

logic has a different mechanism in functional evaluation compared to the

traditional Boolean logic, a threshold logic gate can represent a more

complex function. As a result, the sensitization criterion in threshold

logic circuits is also different. In this work, we propose a sensitization

criterion for threshold logic circuits, and show its application to the static

timing analysis problem. The experimental results show the accuracy of

the proposed criterion.

I. INTRODUCTION

Threshold logic is an alternative form, which possesses the

compactness characteristic, to present a Boolean network with a

smaller depth and fewer nodes. For example, a Boolean function

f = ab + bcd + e + g can be represented by a single threshold

logic gate. In the past decades, many different approaches to hardware

implementations of combinational/sequential threshold logic circuits

had been proposed [23, 25]. However, due to the lack of an efficient

implementation for threshold logic gates, the developments of design

automation methods for threshold logic had slowed down compared

to its counterpart in Boolean logic. Recently, with the advanced

development in nanotechnologies, many nano-devices have been

proposed, such as resonant tunneling diode [3, 37], single-electron

transistor [9–11, 17, 31, 41], and quantum cellular automata [39, 43],

which provide promising and efficient implementations for threshold

logic gates. Meanwhile, efficient CMOS implementations of threshold

logic gates have also been available [7]. A more detailed discussion

and a comprehensive survey for threshold logic implementations were

summarized in literature [4].

Despite the efforts had been made on the implementations of

threshold logic gates, only a few commercial solutions had adopted

the threshold logic implementations, such as MIPS R2010 [26],

SUN Sparc V9 [32], and the Itanium 2 microprocessor [36]. In

the comprehensive survey of threshold logic implementations around

a decade ago [4], Beiu et al. concluded that the reason why the

competitive threshold logic gates are not widely used is due to the lack

of synthesis tools. As a result, threshold logic circuit designs require

a great amount of manual efforts. Thus, the pervasion of threshold

logic depends not only on the efficient implementations, but also on

the availability of design automation tools.

Fortunately, in parallel with the advances of threshold logic

implementation, the design automation research on threshold logic

This work is supported in part by the National Science Council of Taiwan
under Grant NSC 102-2221-E-007-140-MY3, NSC 102-2221-E-155-087, NSC
101-2221-E-155-077, NSC 101-2628-E-007-005, and NSC 100-2628-E-007-
031-MY3, and by the National Tsing Hua Unversity under Grant NTHU
102N2726E1.

has been advanced as well. Different synthesis methodologies have

been proposed to synthesize multi-level threshold logic networks

[2, 18, 20, 21, 29, 46]. In the field of verification and testing, efforts

have been made as well [19, 22, 47]. Gupta et al. developed a fault

model targeting RTDs technology and proposed a generic automatic

test pattern generation (ATPG) framework for testing threshold logic

networks [22]. Gowda et al. and Zheng et al. proposed different

algorithms performing logic equivalence checking for threshold logic

circuits [19, 47].

Sensitization criterion is important to timing analysis, and other

applications [15, 16, 24, 28, 45]. For traditional Boolean circuits,

many different sensitization criterions have been proposed for com-

puting the longest sensitizable path, or critical path of the circuits

[5, 8, 13, 15, 16, 30, 33, 34, 40, 42]. However, for threshold logic

circuits, since its evaluation mechanism is different from the Boolean

circuits and not every threshold logic gate has the controlling value

or non-controlling value due to the compactness characteristic of

threshold logic1, its sensitization criterion is different as well.

To the best of our knowledge, this work is the first study targeting

the sensitization criterion of threshold logic circuits. We also show

its application to the static timing analysis (STA) of threshold logic

circuits. The main contributions of this work are two-fold:

1) It is the first work that proposes a sensitization criterion for

threshold logic circuits.

2) An STA algorithm for threshold logic circuits is developed

and integrated with an existing threshold logic synthesis

tool, TELS [46].

II. BACKGROUND

In this section, we review the background about the threshold

logic, and the sensitization criteria in the traditional Boolean logic

networks.

A. Threshold logic

A Linear Threshold logic Gate (LTG) has n binary inputs,

x1, x2, ..., xn, and one binary output f . Each input variable xi is

associated with a weight wi, and every LTG is associated with a

threshold value T . A threshold logic function is a subset of Boolean

functions that can be synthesized as a single LTG [35]. A threshold

logic network is composed of LTGs, and each LTG can be represented

as a weight− threshold vector 〈w1, w2, ..., wn;T 〉. For example,

Fig. 1(a) shows a Boolean network. Its corresponding threshold logic

network can be represented as a multiple-gate network, e.g., Figs.

1(b) or 1(c). In Fig. 1(c), we can use 〈5, 2, 3, 1, 1; 5〉 to represent the

threshold logic gate G5.

1A threshold logic gate can represent a function that is a composition of
many Boolean logic gates.

226978-1-4799-1071-7/13/$31.00 ©2013 IEEE

x
1

x
2

x
3

x
4

x
5

x
6

f

(a)

1
f 1

1

G
3

2
1

1

x
1

x
2

G
1

5

 2

3

1

 1

x
3

x
4

x
5

x
6

G
2

(b)

G
5

f
1

 5

 2

 3

 1

 1

f
5

x
3

x
4

x
5

x
6

2
1

1

x
1

x
2

G
4

(c)

Figure 1: (a) An original Boolean network. (b) A synthesized threshold logic network. (c) Another synthesized threshold logic network.

The evaluation of output f of an LTG is based on the relationship

of the weighted summation and threshold value, as formulated in

EQ(1). The output f is 1 if the summation of each product xi×wi is

greater than or equal to the threshold value T . Otherwise, the output f
is 0. For example in Fig. 1(c), G4 is 1 if and only if X1×1+X2×1 ≥
2.

f(x1, x2, . . . , xn) =



















1, if

n
∑

i=1

xiwi ≥ T

0, if

n
∑

i=1

xiwi < T

(1)

Unateness is an important property of LTGs, because all threshold

logic functions are unate Boolean functions [27]. Nonetheless, not

every unate Boolean function is a threshold logic function. For

example, f = ab + cd is a unate function, but it is not a threshold

logic function since it cannot be respesented by a single LTG. If all

the weights of an LTG are positive (negative), the Boolean function it

represents is positive (negative) unate. The characteristics of threshold

logic were explored and summarized in [14, 35, 44].

For ease of analysis, we assume that the weights of each LTG are

positive in this work. This assumption can be achieved by performing

the positive-negative weight transformation procedure [35] when the

given LTG has a negative weight.

Next, we introduce some terminologies about LTGs, which will

be used in the succeeding discussion.

Definition 1: A group of an LTG is composed of either a single

input having the weight greater than or equal to the threshold value

T , or all the inputs having the weights smaller than the threshold

value but the summation of all weights is greater than or equal to

the threshold value, referred as single-input group and multiple-input

group, respectively.

Input grouping is the process that separates the inputs and their

corresponding weights of an LTG into different groups. An LTG

can have one or more groups with respect to the different weights

and threshold values. For example in Fig. 1(c), the inputs of G5

are separated into two groups, f1 forms a single-input group and

X3 ∼ X6 form a multiple-input group. In Figs. 1(b) and 1(c), G1,

G2, and G4 only have one multiple-input group; while G3 and G5

have two groups.

Definition 2: A multiple-group LTG G is a threshold logic gate having

multiple groups. If G has only one group, it is referred as a single-

group LTG.

Definition 3: An LTG is useless if and only if it outputs zero for all

input combinations [29].

In this work, we assume that the given threshold logic network

contains no useless LTGs. For instance, 〈1; 2〉 and 〈1, 2, 2; 6〉 are

useless LTGs due to the satisfaction of Definition 3. Theorem 1 is

used to determine whether an LTG is useless or not.

Theorem 1[29]: Given an LTG, it is useless if and only if it satisfies
∑n

i=1
wi < T , where n is the number of inputs of the LTG.

Definition 4: An LTG G has a critical input xi if and only if G is

useless after removing xi and the corresponding weight wi.

Theorem 2 is used to determine whether an input xi of an LTG

is critical or not.

Theorem 2[29]: Consider an LTG, an input xi is critical if and only

if it satisfies
∑n

j=1,j 6=i
wj < T , where n is the number of inputs of

the LTG.

For instance in Fig. 1(b), X4 is a critical input of G2, because

the summation of all the other weights except w4, 2 + 1 + 1 = 4, is

less than the threshold value, 5.

B. Sensitization Criteria in Boolean Logic

A gate is said to be sensitizable if there exists one input

assignment that propagates a transition against the previous input

assignment from the input to the output of the gate.

Different sensitization criteria and algorithms have been proposed

to identify the critical path of a circuit [8, 16, 33, 40]. In general, the

sensitization criteria can be classified into two categories: one is the

correct sensitization [16, 40], and the other is the exact sensitization

[8, 33]. A correct sensitization criterion never estimates a smaller

gate delay than the actual delay, but could overestimate the delay

instead. The accuracy of this sensitization criterion is determined by

how close the estimated delay is against the actual delay. On the other

hand, an exact sensitization criterion can exactly estimate the same

delay as the exhaustive timing simulation approach does [8].

Given a path P = (x0, G1, x1, ..., Gi, xi, Gi+1, ...,

Gn−1, xn−1, Gn, xn), where x0 is a primary input (PI), xn is a

primary output (PO), and xi is a wire connecting two gates Gi and

Gi+1 in the path P . xi is named as an on-input of the path P , and

the other inputs of the gates along the path are referred as side-inputs.

To sensitize a path P , each on-input xi has to meet the sensitization

conditions of the gate. Different sensitization criteria have different

sensitization conditions with respect to the gate types. A controlling

value of a gate G, denoted as cv(G), is a logic value that determines

the output value of the gate, independent of the side-inputs’ values.

For instance, assume G1 is an AND/NAND gate, cv(G1) = 0.

Assume G2 is an OR/NOR gate, cv(G2) = 1. The complement

of a controlling value is called a non-controlling value, denoted as

227

5

x1

x2

x3

x4

f
 2

2

2

 1

 1

 0

 1

X->1

X->1
5

x1

x2

x3

x4

f
 2

2

2

 1

 0

 1

X->0

X

X->0

(a) (b)

Figure 2: (a) The first condition for output stability. (b) The second

condition for output stability.

ncv(G). For example, ncv(G1) = 1, ncv(G2) = 0. In this work,

we use four-valued logic including 0, 1, X (unknown), and − (don’t

care) to model the signal values.

Next, we introduce the exact sensitization criterion [8], which is

the basis of our work. To sensitize a transition of a gate along a path

P , each on-input xi of the gates on P must meet one of the following

two conditions:

1) xi arrives earliest among those inputs of the gate Gi+1

holding cv(Gi+1) while some side-inputs of the gate Gi+1

may be ncv(Gi+1).
2) xi arrives latest among all inputs of the gate Gi+1 and

xi = ncv(Gi+1) while all the side-inputs of the gate Gi+1

are also ncv(Gi+1).

III. PROPOSED SENSITIZATION CRITERION

In this section, we investigate and classify the types of LTGs,

and propose the corresponding sensitization conditions for them.

Some types of LTGs have the same functionalities as the primitive

gates in Boolean logic, such as AND/NAND and OR/NOR gates.

Therefore, their sensitization conditions are the same as the ones in

Boolean logic. However, other types of LTGs, e.g., those representing

complex functions, do not have the concepts of the controlling or the

non-controlling values. Hence, in the following paragraphs, we will

discuss the proposed sensitization conditions for them.

Before we present the sensitization conditions for different types

of LTGs, we discuss the conditions that make the outputs stable using

the example in Fig. 2 according to the output evaluation mechanism

of LTGs. There are two different conditions leading to a stable output

of LTGs under the floating mode operation [8, 15]. The first stable

condition is that once the summation of weights in the stabilized-at-12

inputs is greater than or equal to the threshold value, the LTG will be

stable as 1. The second stable condition is that once the summation

of the weights in the stabilized-at-1 inputs and the other unstabilized

inputs is less than the threshold value, the LTG will be stable as

0. We use the example in Fig. 2 to explain these conditions under

the assumption that the arrival order of input variables is x1 > x2 >
x3 > x4. Consider x4 in Fig. 2(a), both inputs x1 and x3 earlier arrive

and are stabilized-at-1. Once x4 is stabilized-at-1, the LTG will be

stable as 1 because the summation of weights in the stabilized inputs

is equal to the threshold value. On the other hand, consider x3 in Fig.

2(b), x2 earlier arrives and is stabilized-at-1. Once x3 is stabilized-

at-0, the LTG will be stable as 0. This is because the summation of

weights in the stabilized-at-1 and the remaining inputs, i.e., w2+w4,

is less than the threshold value.

Next, we introduce a terminology which is used to describe the

situation that the output of an LTG is stable caused by an input.

2Stabilized-at-0 and stabilized-at-1 are defined as the final state, either 0 or
1, of inputs during the signal evaluation process of LTGs.

Type-1 Type-2

Type-3 Type-4

1

x
1

x
2

x
3

f
 1

1

 1

3

x
1

x
2

x
3

f
 1

1

 1

3

x
1

x
2

x
3

f
 2

1

 1

3

x
1

x
2

x
3

f
 3

1

 2

Figure 3: Using 3-input LTGs to represent the four different types of

LTGs.

Definition 5: When xi is stabilized, the output state of a threshold

logic gate G becomes stable. Then, this input xi is named as a

dominant input of G.

Theorem 3 is used to determine whether an input xi of an LTG

is dominant or not.

Theorem 3: A dominant input xi exists if and only if an LTG satisfies

either EQ(2)

(

i−1
∑

j=1

xj × wj)+wi ≥ T (2)

where xi is stabilized-at-1, xj is the input arrives not later than xi,

and
∑i−1

j=1
xj × wj < T , or EQ(3)

i−1
∑

j=1

xj × wj+

n
∑

k=i+1

wk < T (3)

where xi is stabilized-at-0, xj is the input arrives not later than xi,

xk is the later input than xi, and n is the number of inputs.

Moreover, if there are two or more inputs that arrive at the same

time and are stabilized-at-0/1, under the floating mode operation,

these inputs can be all considered as the dominant inputs of the LTG

whenever they satisfy the stable conditions. For example in Fig. 2(b),

assume that x3 and x4 are simultaneously stabilized-at-0, they cause

the weight summation less than the threshold value 5. Since both x3

and x4 satisfy EQ(3), they are both considered as the dominant inputs

of the LTG.

In this work, we classify the LTGs into four types as shown in

Fig. 3 according to the sensitization conditions investigated.

Type-1: Multiple-group LTG, given all of its groups are single-

input groups: Since every input itself forms a group, it means that

when one of the groups is set to 1, the output will be 1. This type

of LTG is functionally equivalent to an OR gate. As a result, the

sensitization conditions in Boolean logic can be applied to this type

of LTG as well.

Type-2: Single multiple-input group LTG, given all of its inputs

are critical: Since all of its inputs are critical, it means that when

one of the inputs is set to 0, the output will be 0. This type of LTG is

functionally equivalent to an AND gate. As a result, the sensitization

conditions in Boolean logic can be applied to this type of LTG as

well.

Type-3: Single multiple-input group LTG, given one or more of

its inputs is not critical: This type of LTGs is similar to Type-2 LTG

except that one or more of its inputs are not critical inputs. Since this

type of LTG represents a complex function, it has neither a controlling

228

value nor a non-controlling value. However, it still can make the

output stable under certain conditions. The proposed sensitization

condition for this type of LTG is as follows.

3) xi is a dominant input of the gate Gi+1.

Type-4: Multiple-group LTG, given one of its groups is a multiple-

input group: This type of LTG is composed of one or more single-

input groups and one multiple-input group, and also represents a

complex function. The newly proposed sensitization condition for

Type-3 LTGs can also be applied on this type of LTG.

As a result, the proposed new sensitization condition can be

integrated with the first two traditional sensitization conditions men-

tioned in Section II-B to form our sensitization criterion. Based on

the observation for the output stability of threshold logic and the

integrated sensitization conditions, the proposed sensitization criterion

is also exact.

Already

K true

paths?

Yes

No

Path Sensitization

(for each path Pj in the path list)

Mark Pj

True/False

Any

conflict?

Yes

No

Any other

decisions?

Yes

No

Preprocess

Transform

weight

Classify LTGs

Collect

violated paths

Group

inputs

Compute arrival

& required time

Start

Input:

A threshold logic network

N, a delay constraint D,

and a path number

constraint K

Output:

Report true paths

and their delays

End

Justify

Forward simulate

Backtrack

Gi+1←Gi+2; xi←xi+1

Is Gi+1 a

PO?

No

Yes

Sensitize xi

on Gi+1

Figure 4: The overall flow of the proposed STA algorithm.

IV. APPLICATION TO STATIC TIMING ANALYSIS

In this section, we present an application of STA for threshold

logic circuits using the proposed sensitization criterion as shown in

Fig. 4. Given a threshold logic network N , a delay constraint D,

and a path number constraint K, the algorithm will report at most K
critical paths whose path delays are greater than D. The value of D
is determined by designers and used to set the delay constraint that a

path would violate. The value of K is used to determine the desired

number of critical paths.

The delay model used in this work is a normalized delay model of

threshold logic, which was concluded by the simulation results using

HSPICE [6, 38]. The simulation results show that the gate delay is

proportional to the number of fanin when the fanin number is smaller

than 20. This delay model is generally applicable to many threshold

networks, since the fanin numbers of general threshold networks are

not larger than 20. For simplicity, the wire delay in this work is

assumed to be zero3.

The proposed algorithm consists of two major parts: preprocess

and path sensitization, which will be discussed in detail in the

following subsections.

3The proposed algorithm is also applicable to the threshold network with a
non-zero wire delay model.

4

AT(a)=1 a

 c

 e

 g
1

f

G
2
:d(G

2
)=4

 2

 1

 1

AT(b)=2 b

AT(c)=3 c

AT(d)=4 d

3

G
1
:d(G

1
)=3

RT(f)=8
 3

 2

 1

 1

1

AT(e)=5 e

g

G
3
:d(G

3
)=2

1

1

RT(g)=8

g
1
‘

Figure 5: An illustration for the computation of the arrival and

required times.

A. Preprocess

During the preprocess, we first transform the given threshold logic

network. The transformation procedure includes the positive-negative

weight transformation, inputs grouping, and LTGs classification. Next,

we compute each gate’s minimal and maximal arrival times in a depth-

first search (DFS) manner from PIs to POs based on the delay values.

Then, we compute the required time of each gate from POs to PIs.

Finally, we collect a list of violated paths according to the path delay

and the delay constraint D.

We use Fig. 5 to explain the computation of minimal, maximal

arrival times, and required time under the assumption that the delay

constraint D = 8 and AT (a) ∼ AT (e) = 1 ∼ 5, respectively. Given

a path P = (x0, G1, x1, ..., Gi, xi, Gi+1, ..., Gn−1, xn−1, Gn, xn),
where x0 is a PI, xn is a PO, and xi is a wire connecting two

gates Gi and Gi+1 in the path P . AT (xi+1) is within the range of

the summations of the arrival time of Gi+1’s inputs and d(Gi+1).
Hence, in Fig. 5, AT (g1) is within the range of (AT (b)+d(G1)) to

(AT (d) + d(G1)), i.e., 5 ∼ 7. Similarly, AT (f) is calculated in the

same manner and is within 5 ∼ 11. On the other hand, the required

time of the PO is equal to the delay constraint D, and RT (xi) is the

minimum required time among Gi+1’s fanouts subtracting d(Gi+1).
Hence, in Fig. 5, RT (f) is equal to D, and RT (c) in G1 is equal to

min{RT (g1)−d(G1), RT (g′1)−d(G1), RT (c) = RT (f)−d(G2)}
where RT (c) in G2 is earlier computed. Since RT (g1) − d(G1) =
RT (f) − d(G2) − d(G1) = 8 − 4 − 3 = 1 is smaller than both

RT (g′1) − d(G1) = RT (g) − d(G3) − d(G1) = 8 − 2 − 3 = 3
and RT (c) = RT (f) − d(G2) = 8 − 4 = 4, RT (c) is equal to

RT (g1)− d(G1) = 1. The computed arrival times and required time

in this example are summarized in Fig. 6.

After computing the minimal, maximal arrival times, and the

required time of each node/wire in the network, we start to collect

the violated paths in the network. A violated path is constructed in a

DFS manner from a PI toward a PO. For a PI α, if RT (α) < AT (α),
then the PI α is collected as the partial path of a violated path. Next,

for each α’s fanout β, if RT (β) < AT (β), then β is collected into

the partial path as well. Otherwise, this path is withdrawn. The partial

path continues to collect a node γ when RT (γ) < AT (γ). When

a PO is reached during this process, a violated path is found. The

process of collecting violated paths is repeated until all PIs have been

examined.

We use Fig. 6 to illustrate the process of collecting violated

paths. We first start from a PI a. Since RT (a) > AT (a), a is

229

4
f

 2

 1

 1

 AT(b)=2, RT(b)=1 b

AT(c)=3, RT(c)=1 c

AT(d)=4, RT(d)=1 d

3

AT(f)=5~11

RT(f)=8
 3

 2

 1

 1

1
e

g 1

1

AT(g)=7~9

RT(g)=8 AT(g
1
‘)=5~7, RT(g

1
‘)=6 g

1
‘

AT(g
1
)=5~7

RT(g
1
)=4

a

c

e

g
1

AT(a)=1, RT(a)=4

AT(e)=5, RT(e)=4

G
2
:d(G

2
)=4

G
1
:d(G

1
)=3

G
3
:d(G

3
)=2

Figure 6: An illustration for collecting violated paths.

not a partial path of a violated path. Then, we check another PI

b. Since RT (b) < AT (b), b is a partial path of a violated path.

Then, we extend this partial path to the next gate G1 and wire

g1. Since RT (g1) = 4 < AT (g1) = AT (b) + d(G1) = 5
from b, the extension is valid. Finally, RT (f) = 8 is also less

than AT (f) = 5 + 4 = 9 from g1. As a result, a violated

path (b,G1, g1, G2, f) is collected. Then, we check if there exist

other violated paths from the other fanout g′1 of gate G1. Since

RT (g′1) = 6 > AT (g′1) = AT (b) + d(G1) = 5, (b,G1, g
′
1) is not

a partial path of a violated path. For the remaining PIs, c, d, and e,

we also collect the corresponding violated paths, (c,G1, g1, G2, f),
(d,G1, g1, G2, f), (d,G1, g

′
1, G3, g), and (e,G2, f) in the same

manner.

The overall procedure for collecting the violated paths includes

arrival/required time calculation and violated path generation. The

required/arrival time calculation on each node is from the POs/PIs

and proceeds to its fanins/fanouts. Thus, the time complexity for

this calculation is O(V + E), where V is the number of LTGs

and E is the number of wires in the threshold network. Next, a

violated path is generated by examining the slack of each node

from the PIs to the POs. Although this violated path enumeration

process is theoretically time-consuming, it is practically feasible and

efficient. This is because when the delay constraint is not extremely

small, many paths will be pruned out without enumeration during

this process. This phenomenon also can be seen in our experimental

results.

B. Path Sensitization

Given a collected violated path Pj , we then try to find an

assignment that satisfies the sensitization conditions for the on-input

xi on each gate Gi+1 along Pj . According to the computed arrival

time of xi and its side-inputs, we can derive some input assignments.

If the assignments are consistent, Pj is sensitizable meaning that it

is a true path. Otherwise, Pj is unable to be sensitized and is a false

path. The procedure of deriving the input assignments depends on the

types of LTGs and its corresponding sensitization conditions. Thus,

we discuss this derivation procedure for the LTGs in two categories.

The first category is for Type-1 and Type-2 LTGs; the other category

is for Type-3 and type-4 LTGs.

1) Type-1 and Type-2 LTGs: We discuss these two types

of LTGs in three cases according to the precedence of the

arrival time among all the inputs of an LTG.

Case 1: xi is the earliest input of Gi+1: The input

assignment satisfying the sensitization condition is xi =

 a

 c

3/7

1

 5/7

 e

 3/5

0/4

0

 3/4

0/2
 c

2/4

2/3

 e
 4/5 3/4

wp / wn = 0/7
Then-edge (1)

Else-edge (0)

Figure 7: The sensitization BDD for G2 in Fig. 6.

cv(Gi+1).
Case 2: xi is the latest input of Gi+1: xi is either

cv(Gi+1) or ncv(Gi+1) while all the side-inputs are

ncv(Gi+1).
Case 3: AT (xi) is within the range of the arrival time

of the inputs in Gi+1: xi = cv(Gi+1), and the earlier

side-inputs are ncv(Gi+1).
2) Type-3 and Type-4 LTGs: We propose to construct a

sensitization Binary Decision Diagram (BDD) [1] for de-

termining if an input assignment exists for satisfying the

sensitization conditions of these types of LTGs.

We use a violated path (e,G2, f) on G2 in Fig. 6 to demonstrate

the construction of this BDD as follows. Assume that e is the on-

input and we set the variable ordering of the sensitization BDD as the

input arrival order of G2, a > c > e > g1. Note that, this BDD only

contains the on-input e and the side-inputs that arrive not later than

the on-input, i.e., a and c, since we intend to check the sensitization

condition for the on-input e.

Next, we describe how to construct the sensitization BDD. Each

edge in the sensitization BDD associates with two integers wp and

wn, denoted as wp/wn. wp is initialized as 0 which represents

the currently accumulated weight from the stabilized inputs. wn is

initialized as the summation of all weights which represents the

total amount of weights to be accumulated. For example, wp/wn is

initialized as 0/7 in Fig. 7 where 7 is the summation of all weights

in G2. Next, we build the then-edge and else-edge from the root

node according to the assigned value, 1 or 0, of the root node. The

wp/wn values on the edges need to be updated from the values on the

coming edge of the parent node as follows. For the then-edges, wp is

updated as (wp+wj) and wn remains unchanged; for the else-edges,

wp remains unchanged and wn is updated as (wn−wj) where wj is

the input weight in the parent node. For example in Fig. 7, if input a is

assigned as 1, wp/wn is updated as (wp+wj)/wn = (0+3)/7 = 3/7
where wj is the weight of a. If input a is assigned as 0, wp/wn is

updated as wp/(wn − wj) = 0/(7 − 3) = 0/4. The same update

procedure is conducted for the other edges. For example, consider

the node c on the left side, if c is assigned as 1, wp/wn is updated

as (3 + 2)/7 = 5/7. If c is assigned as 0, wp/wn is updated as

3/(7− 2) = 3/5.

During the construction of the sensitization BDD, for the then-

edge, once its wp is greater than or equal to the threshold value T ,

230

the edge directly leads to the terminal 1. On the other hand, for the

else-edge, once its wn is less than T , the edge directly leads to the

terminal 0. These two terminal values represent the stabilized output

values. For the paths from the root node to the terminal nodes, if its

last assigned input is the on-input xi of the LTG, an input assignment

satisfying the sensitization condition is found. For example in Fig. 7,

there are two paths leading to the terminal 1. For the leftmost path

a → c, since the last assigned input is not the on-input e, e is not

the dominant input under such an input assignment (a = 1, c = 1).
Thus, we discard this path. Next, we find another path a → c̄ → e
and realize the assignment (a = 1, c = 0, e = 1) is responsible for

sensitizing the on-input e. For the paths not leading to the terminals,

like a → c̄ → ē, they represent that the on-input is not sensitized

under this assignment. Similarly, the other sensitization path for the

on-input e is ā → c → ē. For a sensitization BDD of an LTG, if

there exists no sensitization path for the on-input, the path involving

the on-input is a false path.

Next, we use a violated path (c,G1, g1, G2, f) to demonstrate

how to determine the truth or falsity of a path. Consider the on-input

c in G1 of Fig. 6, because G1 is a Type-3 LTG, we can construct

its sensitization BDD as mentioned to derive the input assignment

(b = 1, c = 1) for sensitizing the on-input c. After deriving the

sensitized input assignments, we then check whether the assignments

are consistent with the actual input values. Since inputs b, c, and

d have not been assigned, we can accept this assignment. Next, we

forward simulate (b = 1, c = 1) and get g1 = g′1 = 1 since the

weight summation, wb+wc = 3, of G1 is equal to the threshold value

3. After getting g′1 = 1, the PO g is set to 1 as well. As for G2, since

a and e still remain unknown, f remains unknown. Meanwhile, the

corresponding arrival times are updated as AT (g1) = 6, AT (g′1) = 6,

and AT (g) = 8.

Next, because G1 is not a PO, we continue to sensitize the next

on-input g1 in G2 for this violated path. G2 is also a Type-3 LTG, and

the sensitized input assignments are, (a = 1, c = 0, e = 0, g1 = 1),
(a = 1, c = 0, e = 0, g1 = 0), and (a = 0, c = 1, e = 1, g1 = 1).
However, after examining these input values, we found that c = 0
in the first two input assignments is inconsistent with the derived

assignment of c = 1. Thus, we select the last assignment (a = 0, c =
1, e = 1, g1 = 1). Because G2 has reached the PO f , it means that

this path is successfully sensitized under this assignment (a = 0, b =
1, c = 1, d = −, e = 1) without causing any conflict.

C. Overall Flow

The overall flow of STA algorithm is shown in Fig. 4. Frst, for the

given threshold logic network, its delay model, and the constraints, we

explore the threshold network. During the traversal of the threshold

network, we label the type of each LTG according to its input weights

and threshold value, and then transform the network. After completing

the transformation procedure, we compute the required time and the

arrival time. By comparing the arrival time and required time, we

eliminate non-violated paths during the path enumeration process.

Then, we try to sensitize each violated path according to the path

delay in the descending order. For each violated path, if we can derive

consistent assignments in the PIs, this path is a true path. Otherwise,

this violated path is a detected false path. We repeat the process for

each violated path until at most K critical paths are identified.

V. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C, and conducted

the experiments on a 3.0 GHz Linux platform (CentOS 4.6). The

benchmarks were selected from the MCNC and IWLS 2005 [12]

benchmark suite in a blif format. These benchmarks were first

synthesized as threshold logic networks using the tool TELS [46] with

a default fanin number constraint, 6, which is the maximal number

of inputs allowed in an LTG of the network. In the experiments, to

demonstrate the accuracy and capability of the proposed algorithm,

we compared our results against the results obtained from a timing

simulator, which is an extension of the simulator provided in the

synthesis tool, TELS [46].

Table I. THE EXPERIMENTAL RESULTS OF TIMING ANALYSIS FOR OUR

APPROACH AND THE EXHAUSTIVE SIMULATION APPROACH USING THE

DELAY MODEL (1 + 0.35× fanin) FOR K = 1 AND K = 10.

benchmark |PI| |LTG| D TLP

EX-Simulation Ours

delay T (s)
K=1 K=10

delay T (s) T (s)

majority 5 1 1 2.75 2.75 <0.01 2.75 <0.01 <0.01

C17 5 4 4 5.45 5.45 <0.01 5.45 <0.01 <0.01

b1 3 8 2 3.75 3.75 <0.01 3.75 <0.01 <0.01

cm138a 6 9 3 4.45 4.45 0.03 4.45 <0.01 <0.01

cm82a 5 12 5 6.50 6.50 0.02 6.50 <0.01 0.01

cm42a 4 13 4 5.45 5.45 0.01 5.45 <0.01 <0.01

cm151a 12 14 8 9.90 9.90 2.40 9.90 <0.01 <0.01

decod 5 18 3 4.10 4.10 0.03 4.10 <0.01 <0.01

x2 10 21 5 6.85 6.85 1.14 6.85 <0.01 0.01

pm1 16 23 6 7.55 7.55 82.62 7.55 <0.01 0.02

cm163a 16 23 9 10.95 10.95 75.80 10.95 <0.01 0.02

xor5 5 25 9 10.95 10.95 0.02 10.95 <0.01 <0.01

cm162a 14 25 11 12.65 12.65 12.99 12.65 <0.01 0.01

cmb 16 25 15 16.40 16.40 73.29 16.40 0.01 0.04

cm85a 11 28 16 17.05 17.05 1.89 17.05 <0.01 0.01

cu 14 29 6 7.90 7.90 22.13 7.90 <0.01 0.01

tcon 17 32 2 3.75 3.75 128.06 3.75 <0.01 <0.01

pcle 19 38 13 14.30 14.30 668.67 14.30 <0.01 0.01

parity 16 45 12 13.60 13.60 98.10 13.60 <0.01 0.01

z4ml 7 64 7 8.60 8.60 0.30 8.60 <0.01 <0.01

sct 19 65 9 10.30 10.30 1694.56 10.30 <0.01 0.01

f51m 8 81 7 8.60 8.60 0.85 8.60 <0.01 0.01

9symml 9 131 19 20.15 20.15 2.26 20.15 0.01 0.03

alu2 10 225 38 43.90 39.45 9.96 39.45 17.64 21.69

alu4 14 392 41 46.60 42.15 259.20 42.15 78.47 181.70

vda 17 415 12 13.75 13.75 1806.19 13.75 0.01 0.06

ex5 8 611 25 26.70 26.70 5.21 26.70 0.03 0.18

ex1010 10 1295 32 33.20 33.20 42.63 33.20 0.06 0.59

t481 16 1311 19 20.25 20.25 5246.15 20.25 0.12 1.01

spla 16 2959 43 45.30 45.30 6233.38 45.30 0.34 3.99

In our experiments, the critical path number constraint K is set

as 1 and 10. As for the delay constraint D, if it is set as a very

large value, each path might not be a critical path. On the other

hand, if the constraint is set as a very small value, a large amount of

critical paths might be reported and hence time-consuming. Thus, we

randomly simulate a small amount of patterns, i.e., 10% of the number

of simulated patterns in the timing simulation approach, and adopt

the obtained largest delay as the delay constraint in our experiments.

Table I summarizes the experimental results for MCNC bench-

marks. Column 1 lists the benchmarks. The next two columns show

the circuit information including the number of PIs (|PI|) and the

number of LTGs (|LTG|). Column 4 shows the computed delay

constraint D. Column 5 shows the topologically longest path delay

(TLP). Columns 6 and 7 show the delay and the CPU time, measured

in second, by using the simulation approach. Columns 8 to 10

show the results of the proposed STA algorithm. For example, alu4
benchmark has 14 PIs and 392 LTGs. The delay constraint is set as

41. The topologically longest path delay is 46.60. The exhaustive

231

Table II. THE EXPERIMENTAL RESULTS OF TIMING ANALYSIS FOR OUR

APPROACH AND THE RANDOM SIMULATION APPROACH USING THE DELAY

MODEL (1 + 0.35× fanin) FOR K = 1 AND K = 10.

benchmark |PI| |LTG| D TLP

RD-Simulation Ours

delay T (s)
K=1 K=10

delay T (s) T (s)

i1 25 25 9 10.60 10.60 7.96 10.60 <0.01 <0.01

cc 21 31 4 5.15 5.15 9.26 5.15 <0.01 <0.01

mux 21 36 18 19.50 19.50 8.67 19.50 <0.01 0.01

cm150a 21 37 11 12.30 12.30 7.53 12.30 <0.01 <0.01

pcler8 27 47 15 16.35 16.35 14.74 16.35 <0.01 0.03

cordic 23 63 17 18.10 18.10 1.26 18.10 0.01 0.02

C432 36 145 38 40.40 40.40 34.82 40.40 2.44 3.79

C880 60 232 31 33.55 32.20 57.94 33.55 1.67 1.78

C1355 41 266 30 31.75 31.75 72.36 31.75 1.14 1.44

frg1 28 281 12 13.75 13.75 71.93 13.75 0.01 0.03

C499 41 370 28 29.65 29.65 74.38 29.65 2.98 3.51

usb_phy 116 372 14 15.00 15.00 128.68 15.00 0.02 0.07

rot 135 458 28 38.45 29.80 252.30 32.90 43.92 63.74

sasc 132 627 10 11.60 11.60 214.56 11.60 0.03 0.11

C2670 233 687 35 36.90 36.90 284.25 36.90 0.63 1.06

C3540 50 772 55 59.45 56.00 200.95 59.45 9.62 16.55

i2c 146 965 21 22.55 22.55 305.07 22.55 0.06 0.20

i8 133 1191 19 20.65 20.65 541.61 20.65 2.72 7.97

C5315 182 1296 55 56.85 56.85 393.01 56.85 237.22 257.47

C6288 32 1425 160 161.75 160.10 352.57 161.75 5.01 40.60

i10 257 1527 58 68.20 62.40 723.57 65.15 686.74 727.74

systemcdes 313 2571 43 44.35 44.35 868.19 44.35 2.14 2.48

spi 273 2944 48 50.15 49.45 1275.06 49.80 262.20 388.05

aes_core 786 15351 38 39.95 39.95 7094.39 39.95 64.91 80.06

wb_conmax 1899 32317 40 41.70 41.70 25800.32 41.70 11.61 43.73

b17 1453 35989 55 61.15 55.40 21288.44 61.15 17.95 117.75

simulation cost 259.20 seconds to obtain the circuit delay of 42.15
while our approach required 78.47 seconds to obtain the same delay.

If we increase the critical path number from 1 to 10, the required

CPU time is also increased to 181.70 seconds.

According to Table I, the delays reported from our approach

and the simulation approach are the same for these benchmarks,

meaning that our approach is exact. Furthermore, the required CPU

time is less than that of the exhaustive simulation approach for most

benchmarks. For alu2 benchmark, however, the required CPU time

of our approach is greater than that of the simulation approach. This

is because alu2 has a larger number of false paths, our approach

needs more examinations for identifying a longest true path. On the

other hand, alu2 benchmark has a small number of PIs such that its

exhaustive simulation is affordable. Nevertheless, since the growth of

exhaustive simulation time is exponential to the number of inputs, the

STA approach generally requires less CPU time than the simulation

approach.

Table II shows the results for the IWLS 2005 benchmarks. For

some benchmarks, e.g., b17, in Table II, the simulation approach

reported smaller delays than our approach due to the non-exhaustive,

100, 000 random patterns, simulation. Thus, the simulation approach

reports a lower bound of delay for these benchmarks. According to

Table II, our approach also efficiently reports exact delays for large

benchmarks.

Finally, we use a different delay model in the experiments to

see the delay model’s impact on timing analysis. We extended the

original delay model, (1+0.35×fanin), to another one, (1+0.35×
fanin+ fanout) that also considers the fanout number of an LTG.

Table III shows the results of our approach under this extended delay

model. For alu4 benchmark, the CPU time our approach required

is increased from 78.47 to 194.12 seconds while the CPU time the

exhaustive simulation approach required is almost the same. This is

because the more complex delay model is, the wider diversity of

Table III. THE EXPERIMENTAL RESULTS OF TIMING ANALYSIS FOR

OUR APPROACH AND THE EXHAUSTIVE SIMULATION APPROACH USING

THE DELAY MODEL (1 + 0.35× fanin+ fanout).

benchmark |PI| |LTG| D TLP
EX-Simulation Ours

delay T (s) delay T (s)

majority 5 1 2 3.75 3.75 <0.01 3.75 <0.01

C17 5 4 9 10.45 10.45 0.01 10.45 <0.01

b1 3 8 4 5.75 5.75 <0.01 5.75 <0.01

cm138a 6 9 12 13.45 13.45 0.03 13.45 <0.01

cm82a 5 12 12 13.50 13.50 0.02 13.50 <0.01

cm42a 4 13 14 15.45 15.45 0.01 15.45 <0.01

cm151a 12 14 14 15.90 15.90 2.41 15.90 <0.01

decod 5 18 11 12.90 12.90 0.03 12.90 <0.01

x2 10 21 11 12.85 12.85 1.15 12.85 0.01

pm1 16 23 10 11.55 11.55 82.39 11.55 <0.01

cm163a 16 23 21 22.95 22.95 75.62 22.95 <0.01

xor5 5 25 16 17.60 17.60 0.02 17.60 <0.01

cm162a 14 25 31 32.65 32.65 20.99 32.65 <0.01

cmb 16 25 28 29.40 29.40 73.19 29.40 0.01

cm85a 11 28 33 34.05 34.05 1.90 34.05 <0.01

cu 14 29 9 10.90 10.90 22.17 10.90 <0.01

tcon 17 32 4 5.75 5.75 128.69 5.75 0.01

pcle 19 38 33 34.30 34.30 666.03 34.30 <0.01

parity 16 45 23 24.60 24.60 97.98 24.60 <0.01

z4ml 7 64 10 11.60 11.60 0.29 11.60 <0.01

sct 19 65 15 16.30 16.30 1695.63 16.30 <0.01

f51m 8 81 10 11.60 11.60 0.85 11.60 <0.01

9symml 9 131 31 32.10 32.10 2.26 32.10 0.01

alu2 10 225 105 124.20 106.10 9.96 106.10 15.64

alu4 14 392 112 133.55 113.05 259.07 113.05 194.12

vda 17 415 33 34.70 34.70 1806.42 34.70 0.01

ex5 8 611 73 74.30 74.30 5.21 74.30 0.02

ex1010 10 1295 130 131.45 131.45 42.68 131.45 0.06

t481 16 1311 27 28.25 28.25 5186.94 28.25 0.12

spla 16 2959 198 199.80 199.80 6245.06 199.80 0.20

path delays is, meaning that fewer paths would have the same path

delay. Thus, the true paths might be identified after detecting more

false paths. Nevertheless, according to Table III, the delays reported

from our approach and the exhaustive simulation approach are also

identical for these benchmarks. These results reveal that our STA

approach is exact regardless of the circuit size and delay models.

In summary, according to the experimental results, the proposed

sensitization criterion correctly and efficiently analyzed the delay of

threshold logic circuits. However, the proposed path-based sensitiza-

tion algorithm may not be fast enough for some benchmarks whose

critical path delays are much smaller than the longest path delay.

This is because the developed algorithm is to determine the falsity

of the longest paths until finding the critical paths. Thus, the larger

difference of delays between the longest false path and the true path

is, more CPU time is required to identify the critical paths.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate and analyze different types of

threshold logic gates, and propose the first exact path sensitization

criterion for threshold logic. We also develop the first STA algorithm

for threshold logic circuits. Although the proposed sensitization cri-

terion can correctly estimate the delay of threshold logic circuits, the

efficiency of the developed algorithm still has room for improvement.

Our future work is to study non-path-based or SAT-based STA

algorithms for threshold logic circuits.

REFERENCES

[1] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput-

ers, vol. C-27, pp. 509–516, 1978.

232

[2] M. J. Avedillo and J. M. Quintana, “A threshold logic synthesis

tool for RTD circuits,” in Proc. European Symp. on Digital

System Design, 2004, pp. 624–627.

[3] M. J. Avedillo et al., “Multi-threshold threshold logic circuit de-

sign using resonant tunnelling devices,” Electron. Lett., vol. 39,

pp. 1502–1504, 2003.

[4] V. Beiu et al., “VLSI implementations of threshold logic-a

comprehensive survey,” in Tutorial at Int. Joint Conf. Neural

Networks, 2003.

[5] J. Benkoski et al., “Timing verification using statically sensitiz-

able paths,” IEEE Trans. CAD, vol. 9, pp. 10 723–10 784, 1990.

[6] P. Celinski et al., “Delay analysis of neuron-MOS and capacitive

threshold-logic,” in Proc. Int. Conf. Electronics, Circuits and

Systems, 2000, pp. 932–935.

[7] P. Celinski et al., “State of the art in CMOS threshold logic

VLSI gate implementations and systems,” in Proc. Int. Conf.

VLSI Circuits and Systems, 2003, pp. 53–64.

[8] H.-C. Chen and D. H.-C. Du, “Path sensitization in critical path

problem,” IEEE Trans. CAD, vol. 12, pp. 196–207, 1993.

[9] Y.-C. Chen et al., “Automated mapping for reconfigurable

single-electron transistor arrays,” in Proc. DAC, 2011, pp. 878–

883.

[10] Y.-C. Chen et al., “A synthesis algorithm for reconfigurable

single-electron transistor arrays,” ACM Journal on Emerging

Technologies in Computing System, vol. 9, p. Article 5, 2013.

[11] C.-E. Chiang et al., “On reconfigurable single-electron transistor

arrays synthesis using reordering techniques,” in Proc. DATE,

2013, pp. 1807–1812.

[12] “IWLS 2005 benchmarks,” http://iwls.org/iwls2005/benchmarks.html.

[13] Y.-T. Chung and J.-H. R. Jiang, “Functional timing analysis

made fast and general,” in Proc. DAC, 2012, pp. 1055–1060.

[14] M. L. Dertouzos, Threshold Logic: A Synthesis Approach.

M.I.T. Press, 1965.

[15] S. Devadas et al., “Delay computation in combinational logic

circuits: Theory and algorithms,” in Proc. ICCAD, 1991, pp.

176–179.

[16] D. H.-C. Du et al., “On the general false path problem in timing

analysis,” in Proc. DAC, 1989, pp. 555–560.

[17] S. Eachempati et al., “Reconfigurable bdd-based quantum cir-

cuits,” in Proc. Int. Symp. on Nanoscale Architectures, 2008, pp.

61–67.

[18] T. Gowda and S. Vrudhula, “Decomposition based approach

for synthesis of multi-level threshold logic circuits,” in Proc.

ASPDAC, 2008, pp. 125–130.

[19] T. Gowda et al., “Combinational equivalence checking for

threshold logic circuits,” in Proc. GLSVLSI, 2007, pp. 102–107.

[20] T. Gowda et al., “A non-ILP based threshold logic synthesis

methodology,” in Proc. IWLS, 2007, pp. 222–229.

[21] T. Gowda et al., “Identification of threshold functions and

synthesis of threshold networks,” IEEE Trans. CAD, vol. 30,

pp. 665–677, 2011.

[22] P. Gupta et al., “Automatic test generation for combinational

threshold logic networks,” IEEE Trans. VLSI Systems, vol. 16,

pp. 1035–1045, 2008.

[23] D. Hampel and R. O. Winder, “Threshold logic,” IEEE Spec-

trum, vol. 8, pp. 32–39, 1971.

[24] R. B. S. Hitchcock, “Timing verification and the timing analysis

program,” in Proc. DAC, 1982, pp. 594–604.

[25] S. L. Hurst, “Sequential circuits using threshold logic gates,”

Int. Journal of Electronics, vol. 29, pp. 495–499, 1970.

[26] M. G. Johnson, “A symmetric CMOS NOR gate for high-speed

applications,” IEEE. Journal of Solid-State Circuits, vol. 23, pp.

1233–1236, 1988.

[27] Z. Kohavi, Switching and Finite Automata Theory. McGraw-

Hill College, 1978.

[28] Y. Kukimoto and R. Brayton, “Exact required time analysis via

false path detection,” in Proc. DAC, 1997, pp. 220–225.

[29] P.-Y. Kuo et al., “On rewiring and simplification for canonicity

in threshold logic circuits,” in Proc. ICCAD, 2011, pp. 396–403.

[30] Y.-M. Kuo et al., “Efficient boolean characteristic function for

timed automatic test pattern generation,” IEEE Trans. CAD,

vol. 28, pp. 417–425, 2009.

[31] C. Lageweg et al., “A linear threshold gate implementation in

single electron technology,” in Proc. Comput. Soc. Workshop

VLSI, 2001, pp. 93–98.

[32] L. A. Lev et al., “A 64-b microprocessor with multimedia

support,” IEEE Journal of Solid-State Circuits, vol. 30, pp.

1227–1238, 1995.

[33] P. C. McGeer and R. K. Brayton, “Efficient algorithms for

computing the longest viable path in a combinational network,”

in Proc. DAC, 1989, pp. 561–567.

[34] P. C. McGeer and R. K. Brayton, Integrating Functional and

Temporal Domains in Logic Design. Springer, 1991.

[35] S. Muroga, Threshold Logic and its Applications. John Wiley

& Sons, 1972.

[36] S. D. Naffziger et al., “The implementation of the itanium 2

microprocessor,” IEEE. Journal of Solid-State Circuits, vol. 37,

pp. 1448–1460, 2002.

[37] C. Pacha et al., “Resonant tunneling device logic circuit,”

DortmundGerhard-Mercator University of Duisburg, Germany,

Tech. Rep., 1999.

[38] M. Padure et al., “Capacitive threshold logic: A designer per-

spective,” in Proc. Int. Semiconductor Conf., 1999, pp. 81–94.

[39] M. Perkowski and A. Mishchenko, “Logic synthesis for regular

fabric realized in quantum dot cellular automata,” Journal of

Multiple-Valued Logic and Soft Comput., pp. 768–773, 2004.

[40] S. Perremans et al., “Static timing analysis of dynamically

sensitizable path s,” in Proc. DAC, 1989, pp. 568–573.

[41] V. Saripalli et al., “Energy-delay performance of nanoscale

transistors exhibiting single electron behavior and associated

logic circuits,” Journal of Low Power Electronics, vol. 6, pp.

415–428, 2010.

[42] L. G. Silva et al., “Satisfiability models and algorithms for

circuit delay computation,” ACM TODAES, vol. 7, pp. 137–158,

2002.

[43] P. Venkataramani et al., “Sequential circuit design in quantum-

dot cellular automata,” in Proc. Nanotechnology Conf., 2008,

pp. 534–537.

[44] R. O. Winder, “Threshold logic,” Ph.D. dissertation, Princeton

University, Princeton, NJ, 1962.

[45] S. H.-C. Yen et al., “Efficient algorithms for extracting the k

most critical paths in timing analysis,” in Proc. DAC, 1989, pp.

649–654.

[46] R. Zhang et al., “Threshold network synthesis and optimization

and its application to nanotechnologies,” IEEE Trans. CAD,

vol. 24, pp. 107–118, 2005.

[47] Y. Zheng et al., “SAT-based equivalence checking of threshold

logic designs for nanotechnologies,” in Proc. GLSVLSI, 2008,

pp. 225–230.

233

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

